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We present simple, concrete, two-fermion models that exhibit thermodynamically stable isotropic
translationally-invariant gapless superfluid states (breached pair superfluidity). The momentum
structure of the pairing interaction and the mass ratio between the components are crucial for
determining the stability of such states.

INTRODUCTION

Recently there has been interest in superfluid fermion
systems where there exist superfluid states that retain
gapless fermionic excitations [1, 2, 3, 4]. These states
embody “phase separation in momentum space”: some
degrees of freedom pair, forming a superfluid, while oth-
ers remain unpaired, maintaining normal state properties
of a Fermi surface. They are likely to become experimen-
tally accessible in the near future [5].

We shall consider systems of two species that, in the
absence of interactions, would have two distinct Fermi
surfaces. Simple heuristic considerations suggest the pos-
sibility that pairing takes place about the Fermi sur-
faces, but that there is no pairing in a region between
the surfaces: this led to the term “breached pair” [2].
A breached pair superfluid state (BP) is characterized
by the coexistence of a superfluid and a normal com-
ponent in a translationally invariant and isotropic state.
These components are accommodated in different regions
of momentum space with the normal component residing
in the “breaches”, bounded by gapless Fermi surfaces.

A state of this type was considered much earlier by
Sarma [6]. He considered the case of a superconductor
in an external magnetic field, and found that, although
there is a self-consistent mean-field solution with gapless
modes, it is unfavored energetically to the fully gapped
BCS solution. Similar results were considered in the con-
text of color superconductivity [7], again concluding that
these states are not stable at fixed chemical potential.

Since the fully gapped BCS solution enforces equal
numbers of each species, it was incorrectly suggested [2]
that one might stabilize the gapless phase by enforcing
constraints on the particle numbers. Indeed, by enforcing
unequal numbers of each species, one forbids the forma-
tion of a fully gapped BCS state, but admits “breached
pair” states in which the excess in one species can be ac-
commodated by the breach. In the QCD context, a sim-
ilar argument has been made by imposing charge neu-
trality [3, 4]. Recently, however, Bedaque, Caldas and
Rupak [8, 9] pointed out that a spatially mixed phase
may be energetically preferable: this rules out the first
possibility [2] but may not affect the QCD case due to
the long-range gauge interactions.

Here we clarify, broaden, and correct this discussion.

We conclude that:

• For extensive systems, one can not stabilize a state
by imposing different global constraints (such as
fixed particle number). For such systems, the com-
position of the state can be completely determined
from an analysis of the grand canonical ensemble.
The specific examples considered in [2] are accord-
ingly unstable.

• There are, however, closely related examples of ex-
tensive systems that exhibit breached pair super-
fluidity. We exhibit some below. These states are
thermodynamically stable at fixed chemical poten-
tials.

Our considerations do not apply directly to non-extensive
systems. Charge conservation or color neutrality con-
straints enforced by long-range gauge forces might stabi-
lize BP phases. (Of course, the possibility of a competing
mixed phase must still be considered quantitatively.)

THERMODYNAMIC STABILITY

In the context of two component fermionic systems as
considered in [2, 8, 9], three competing homogeneous
phases have been considered: a normal state of free
fermions (N), a fully gapped superfluid phase (BCS), and
a gapless BP phase. The BCS phase has complete pairing
between the two species, and thus enforces equal densi-
ties. The other phases admit differing densities.

Upon solving the self-consistency conditions (gap equa-
tions), one commonly finds that over a range of chemical
potentials there are three distinct solutions. To deter-
mine the thermodynamic stability in this grand canonical
ensemble, one must minimize the grand thermodynamic
potential or, equivalently, maximize the pressure of the
system. Typically, two of the three solutions are min-
ima on either side of the third BP state which is a local
maximum: Fig. 5 shows a typical potential. The gap-
less states found in [2, 6] correspond to local maxima,
thus the competing state with larger gap parameter ∆
has higher pressure and renders the BP state unstable in
the grand canonical ensemble.

In these previous models, the stable solution with
larger ∆ was always a fully gapped BCS state. In the
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models we present, this stable state is a gapless BP state.
If the stable solution is fully gapped, however, then it

has equal densities and one may forbid this BCS state
by fixing unequal densities in the canonical ensemble.
Furthermore, upon comparing the Helmholtz free ener-
gies H—which must be minimized in this ensemble—one
may find that the “unstable” BP state is favored over the
normal state N.

This apparent contradiction in the stability analysis
based on different ensembles can be resolved by con-
sidering a mixed phase [8, 9] which has an even lower
Helmholtz free energies H . That such a resolution is al-
ways possible, however, may not be apparent; indeed, it
is generally hard to determine the mixed phase explicitly.
By using general properties [10] of the grand thermody-
namic potential Ω, however, one can argue that such a
solution is always possible, as follows. By definition,

−PV = Ω(~µ) = min(H − ~µ · ~N), (1)

where the minimization is over all competing phases.
Thus, Ω is a concave function of the chemical poten-
tials ~µ = (µa, µb). (We consider here fixed T = 0, but
concavity in T also follows from the maximum entropy
principle.) Furthermore, there is a one-to-one correspon-
dence between tangents to this surface and states of fixed
particle number

~N = −∂Ω

∂~µ
. (2)

When Ω is not differentiable, there is a cone of possible
tangent hyperplanes which contact Ω and which bound
Ω from above (see Fig. 1). This cone of tangents de-
scribes various possible mixed phases composed of the
pure phases (where Ω is differentiable) that intersect at
the singularity. To find the state that minimizes H for
some fixed constraint ~N = ~N0 one simply forms the hy-
perplane with gradient ~N0 and drops this until it con-
tacts the surface Ω. The first point of contact will define
either a pure or mixed state which satisfies the appropri-
ate constraints. Note, however, that this state also lies
on Ω, and hence minimizes Ω for the fixed chemical po-
tentials defined by the contact point. No matter what
constraints we apply, there is always a stable state in the
grand canonical ensemble that satisfies the constraints.

Note, however, that this argument is valid only for ex-
tensive thermodynamic systems. Long-range interactions
can render the energy of some pure phases non-extensive
(due, for example, to the rapidly diverging Coulomb en-
ergy per unit volume V as V → ∞). In such cases, a
mixed phase would contain bubbles of limited size. The
surface energy of these phase boundaries becomes a vol-
ume effect and must therefore be taken into account, even
in the thermodynamic limit. This complicates the rela-
tion between ~N and ~µ. In the remainder of this letter,
we shall consider only finite-range interactions.
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FIG. 1: The cone of tangent (hyper)planes to a thermody-
namic potential density −P = Ω(µ)/V . Immediately to the
left of µ0 is a pure phase with density nL while immediately
to the right is another pure phase with density nR. The den-
sities are the negative slopes of the tangents at µ0 according
to (2). At µ = µ0 there is a continuum of mixed phases:
These consist of a volume fraction x at density nL and the
remaining fraction 1 − x at density nR. The average density
over all space, n = xnL + (1−x)nR, lies within n ∈ (nL, nR).

STABLE BREACHED PAIR SUPERFLUIDS

We now demonstrate, by example, how to realize pure
BP superfluid states in extensive systems. We shall con-
sider the mean-field analysis of two models, each with two
species of fermions a, and b of differing masses ma < mb:

H =

∫

d3~p

(

p2

2ma

â†
~p
â~p +

p2

2mb

b̂†
~p
b̂~p

)

+ HI . (3)

(By convention, dp ≡ dp/(2π), ~p is a vector with mag-
nitude p, and â is an operator.) We shall consider these
systems in the grand canonical ensemble at zero temper-
ature by minimizing the thermodynamic potential den-
sity Ω(µa, µb)/V . It will be natural, however, to use the
parameters pF

i =
√

2miµi in place of the chemical poten-
tials µi.

The first model posits a spherically symmetric static
two-body potential interaction V (r) between the two
species a and b:

HI =

∫

d3~x d3~y V
(

|~x − ~y|
)

â†
~x

b̂†
~y

b̂~y â~x. (4)

Defining m± = 2mamb/(mb±ma) and µ± = (µa±µb)/2,

ǫ±p ≡ 1

2

[

p2

2ma

− µa

]

± 1

2

[

p2

2mb

− µb

]

=
p2

2m±
− µ±, (5)

and considering only homogeneous (translationally in-
variant) and isotropic phases, we find that extrema of (1)
satisfy the gap equation

∆p = −
∫

R

d3~q Ṽ
(

|~p − ~q|
) ∆q

2
√

(ǫ+q )2 + ∆2
q

, (6)

where Ṽ (p) is the Fourier transform of V (r). The in-
tegral (6) runs over the region R outside any “breach”.
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FIG. 2: Qualitative T = 0 phase diagram for static two-
body potential scattering model with a Gaussian potential
V (r) ∝ exp(−r2/2λ2). All momentum scales are in units of
~/λ and all energy scales are in units of ~

2/(m+λ2). The
mass ratio is mb/ma = 50 and the coupling strength has
been chosen so that 2m+∆p0

/p2
0 = 0.1 at the point marked

“×” where (pF
b , pF

a ) = (13, 10) to ensure weak-coupling. (This
ratio is less that 1 at all points in this diagram.) Note that the
lower BP region has more heavy particles b while the upper
BP region has fewer heavy particles. The upper type may be
realized in the QCD context [4].

R contains momenta where the two quasiparticle disper-
sions E±

p

E±
p = ǫ−p ±

√

(ǫ+p )2 + ∆2
p, (7)

have opposite sign. (See [2] for further details about the
generic breach structure.) Note from (6) that ∆p is gen-
erally largest about p0, where ǫ+p0

= 0.
Equation (6) can be solved numerically to find ex-

tremal points of the thermodynamic potential. Over this
set of self-consistent solutions, one can minimize Ω to
determine the phase structure.

We have done this for a variety of interactions, and
find similar qualitative structure: a central strip of fully
gapped BCS-like phase about pF

a = pF
b , with normal un-

paired phases outside (see Fig. 2.) Depending on the
model parameters, these phases may be separated by a
region of BP superfluid phase. To verify that these in-
deed contain gapless modes we plot in Fig. 3 a sample set
of occupation numbers, quasiparticle dispersions, and the
gap parameter ∆p,

∆p =

∫

d3~qV (|~p − ~q|)〈b̂~pâ−~p〉. (8)

The presence of gapless fermion modes depends crucially
on the momentum structure of ∆p. In particular, there
must be at least two distinct regions in momentum space:
one with ∆p large enough to support the superfluid, and
another with ∆p small enough that pairing does not ap-
preciably affect the normal free-fermion behaviour. Hav-
ing such a structure, however, does not guarantee the
stability of the phase: the phase must also have higher
pressure than the normal phase.
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FIG. 3: Quasi-particle dispersions E±p (top), occupation
numbers na and nb (middle), and gap parameter ∆p for a
sample BP state at (pF

b , pF
a ) = (13, 10). All units and pa-

rameters are described in Fig. 2. Notice that there are two
“Fermi” surfaces at p ≈ 10.3 and p = 13. The first occurs
where ∆p becomes too small to support a gap, while the sec-
ond is simply the Fermi surface for b (which is unaffected by
the pairing). The “breach” occurs between these surfaces and
only the region R outside contributes to the gap equation (6).

Consider a state with pF
a = pF

b = p0: This is in the
standard BCS phase and, as is well known, always admits
a stable gapped solution. Now consider adjusting the
chemical potentials so as to increase the Fermi surface
pF

b . This stresses the system and lowers the pressure
relative to the normal phase. Eventually, either before
or after a transition to a BP state, the pressure becomes
negative and there is a first order phase transition to the
normal phase of unpaired fermions.

One can consider the point just before this transition
occurs: if ∆pF

b

is sufficiently large, the state will still

be gapped (BCS) and no BP state will occur. On the
other hand, if ∆pF

b

is small, then it will not appreciably
affect the dispersions and one will find a gapless Fermi
surface coexisting with the superfluid phase and a stable
BP state. As was emphasized in [1], the cost associated
with shifting the Fermi sea pF

b can be reduced by increas-
ing the mass mb. Thus, as long as ∆p falls off sufficiently
quickly, one can choose mb so that the transition will
occur with ∆pF

b

small enough to support the BP phase.
The states shown in Fig. 2 and Fig. 3 have a mass ratio
mb/ma = 50.

We have examined other forms of interaction with
longer range and find similar results, though the ex-
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FIG. 4: T = 0 phase diagram for the model (9). We have used
a hard cutoff f(p) ∼ θ(p− 10σ) that has been smoothed over
the range from p ∈ (9.7, 10.3). All momenta are expressed in
units of σ where 10σ is the cutoff scale, and all energies are
expressed in units of σ2/(2m+). The mass ratio is mb/ma = 4
and the coupling g has been chosen so that 2m+∆/p2

0 = 0.2
at pF

a = pF
b = p0 = 10σ to ensure weak-coupling. (This

ratio is less that 1 at all points in this diagram). The solid
lines correspond to first order phase transitions—the mixed
phases of [8, 9] would be found on these lines—and the dotted
lines correspond to smooth, higher order transitions. Close to
the phase transition fluctuations beyond mean-field may play
an important role. We have also found cases in model (4)
where the BCS-BP transition appears to be weakly first order.
These issues will be discussed more fully elsewhere [11]. The
sample state in Fig. 5 at (pF

b , pF
a ) = (11.5, 9.2) is marked “×”.

act structure of ∆p varies. For example, longer-range
forces (such as a screened Coulomb interaction) exhibit
a plateau for low momenta, and fall more slowly to the
right of p0, requiring larger mass ratios. In principle,
however, a BP state can always be realized in these mod-
els with a sufficiently large mass ratio.

Since the variational states of model (4) are parame-
terized by a variable function ∆p, the set of states over
which the minimization (1) must consider is enormous,
and we cannot be certain to have found the global min-
imum. We have searched for stable fixed-points of the
gap equation (6) and compared them, so our results for
this model are consistent and plausible, but not rigorous.

To construct a model for which we can be certain of
the phase structure, we fall back to the type of factorized,
cutoff interaction often considered in BCS models:

HI = g

∫

d3~p d3~q f(p)f(q) â†
~p

b̂†−~p
b̂−~q â~q. (9)

We can choose the cutoff function f(p) to mimic the be-
haviour of ∆p in the more physical model (4).

The advantage of this model is that the varia-
tional states are parameterized by a single number ∆
which is the expectation value of the operator ∆̂ =
g

∫

d3~p f(p)b̂pâ−p. (The momentum dependence has
been replaced by the function f(p).) Thus, one can find
the global minimum by plotting (see Fig. 5) the thermo-
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FIG. 5: Quasi-particle dispersions E±p (top), and occupation
numbers na and nb (middle), in a sample BP state. This state
has gap parameter ∆ ≈ 11 which is the global minimum of the
grand thermodynamic potential density Ω(∆)/V (bottom) as
defined in (10). The maximum at ∆ ≈ 5.6 corresponds to
an unstable BP state. These figures correspond to the point
(pF

b , pF
a ) = (11.5, 9.2) in Fig. 4.

dynamic potential density

Ω(∆)

V
= min

〈θ|∆̂|θ〉=∆

〈θ|Ĥ − µan̂a − µbn̂b|θ〉, (10)

where the minimization is over all BCS style ansatz |θ〉
(equivalent to the mean-field approximation) with given
expectation ∆. This minimization is equivalent to com-
paring all solutions to the gap equation

∆ = −g

2

∫

R

d3~q
∆f(q)

√

ǫ2+(q) + ∆2

. (11)

From this we conclude that, within the space of homoge-
neous phases at zero temperature in the mean-field ap-
proximation, this model has the phase diagram shown in
Fig. 4. We plot the properties of a sample BP state in
Fig. 5 to illustrate that there are indeed gapless modes.

To model ∆p more accurately one might use a func-
tion f(p) where the location of the cutoff stays near
p0. This introduces an inconsistency in the thermody-
namics because f(p) is really a property of the Hamil-
tonian, while p0 depends on the chemical potentials µi,
thus N 6= −∂Ω/∂µ. For small coupling and high densi-
ties, these spurious dependencies become small and the
resulting phase diagram is qualitatively like Fig. 2.
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Physical realizations of a stable BP phase require ei-
ther non-extensivity, or a momentum dependent interac-
tion with a large mass ratio. The former case may occur
in high-density QCD [3, 4] where gauge interactions sta-
bilize the state. The latter case may occur in a quantum
gas of cold neutral atoms operating near Feshbach reso-
nance with effective masses tuned by a laser lattice [5], or
in a system of trapped ions with dipolar interactions [12].
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